
1 
 

Basic Finite State Machines 
With Examples in Logisim and Verilog 
 

By: Andrew Tuline 

Date: June 4, 2013 

This is a work in Progress! 

Introduction 
Having recently rekindled my interest in electronics, I decided to re-learn various aspects of digital logic. 
This document provides some examples of the analysis and design of a few simple Finite State 
Machines. 

What Is Covered 
• Moore machines 
• Mealy machines 
• Logisim (as in free software) based circuit designs 
• Verilog based circuit designs using Altera’s Quartus II (the free version) 
• Verilog based testbench using Altera/Mentor’s ModelSim (also free) 

What Is Not Covered 
This document assumes you are already familiar with: 

• Boolean logic 
• Number systems 
• Flip-flop basics 
• Truth tables 
• Karnaugh maps 
• Combinational logic 
• Hazards (timing glitches) 
• Ripple vs synchronous counters 

In addition, this document does not cover: 

• Verification of the design 
• Timing analysis of the design 
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A Simple Finite State Machine 
Whether it be a counter, a sequence recognizer, a vending machine or an elevator, through the use of 
combinational and sequential logic, we can store information about a system in the form of a Finite 
State Machine. Here’s a very simple example of a Finite State Machine that changes states without any 
additional inputs or outputs. It’s a counter: 

 

 

 

 

 

 

 

 

 

 

This simple Finite State Machine, or ‘FSM’ has 3 states, A, B and C. This will automatically transition 
between each state with a clock signal. These states can be represented in binary with 2 bits, supported 
by 2 flip-flops which would be used to store the state information. The blue arrow points to the 
‘starting’ state.  

These 3 states could also contain more than 2 bits. For example: 

 

 

 

 

 

 

 

State 
Name 

Binary 
Representation 

A 00 
B 01 
C 10 

000 

101 

011 

A B 

State 
Start 

Transition 

C 
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Although, there are only 3 states (thus 2 bits), there happen to be 3 bits of stored information, therefore 
3 flip-flops would be used for this FSM. 

In addition, you can use inputs to move from one state to the next. Let’s say we have an elevator with 2 
buttons, ‘Up’ and ‘Down’. This could be represented as follows: 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
If you’re on the main floor and press the ‘Up’ button, you go up. If you press it again, nothing happens. 
Of course, the ‘down’ button takes you down.  
 
Let’s create binary representation of the inputs and states as follows: 
 
 
 
 
 
 
 
 
 
 

 

  

State 
Name 

Binary 
Representation 

Main 0 
2nd 1 

Button/ 
Input 

Binary 
Representation 

Down 0 
Up 1 

2nd Main 

Up 

Down Up 
Down 

Inputs 

Start 

1 

1 

0 

0 

0 
1 
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Mealy and Moore Machines 
 
Mealy and Moore machines are used to represent our elevator as finite state machines. These provide: 
 

• States 
• State transitions 
• Inputs 
• Outputs 

 
In the previous examples, we would have used the state value as our circuit ‘output’. Shown below is a 
Moore machine where the output values are determined by its current state: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case, it’s just a coincidence that the output and state values match.  
  

State/Output 

1 

1/1 

0 

0/0 

0 
1 

Input 



5 
 

What if you wanted to: 
 

• Push the ‘1’ button to go up, and the ‘0’ button to go down, and 
• Output a ‘1’ every time you change floors and a ‘0’ when you don’t. 

This can be shown by a Mealy machine, which displays the outputs on the state transition instead of the 
state itself, as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As you can see, it’s easy to represent this change with a Mealy machine, but you would require 
additional states to represent this with a Moore machine. Therefore, you might want to use a Moore 
machine when outputs are just associated with the state and a Mealy machine when the outputs are 
associated with an input as well as the state. 
 

  

1/1 

1 

0/0 

0 

0/1 1/0 
Input/Output 

State 
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Flip-flops We’ll Use 
In order to save the state information, we’ll use flip-flops. There are several available from which to 
choose, such as RS, D, T, JK, and several options for each, such as enable, preset, clear or even latches. 
For this article, we’ll focus on basic ‘D’ and ’T’ flip-flops. In addition, we’ll be simulating our resultant 
circuits with Logisim and later with Verilog and ModelSim. See the references at the end of this 
document for information on downloading this free software. 
 
A ‘D’ flip-flop is usually used as a register, where the next state takes on the value of the current input. 

A 'T’ flip-flop is usually used as a counter, where the next state toggles if the current input is a ‘1’. 

We can also configure a JK flip-flop as both a ‘T’ and ‘D’ as follows (with Logisim): 
 
 
 
 
 
 
 
 
We’ll also be using a Next State Table as shown below in order to determine the logic required in order 
to create our FSM’s. 
 
 

 
 
 
 
 
 
 

 

 

Note: The Survivalcraft game for the Android contains SR flip-flops, which are actually JK. As a result, you 
can convert them to ‘T’ or ‘D’ and use the examples in this document in the game.  

Q Q+ R S D J K T 
0 0 ? 0 0 0 ? 0 
0 1 0 1 1 1 ? 1 
1 0 1 0 0 ? 1 1 
1 1 0 ? 1 ? 0 0 
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Next State Transition Table 
For each flip-flop, we’ll need to develop a good understanding of the current state values (or Q) and the 
inputs required to generate the next state value (or Q+). 
 
 

Q Q+ R S D J K T 
0 0 ? 0 0 0 ? 0 
0 1 0 1 1 1 ? 1 
1 0 1 0 0 ? 1 1 
1 1 0 ? 1 ? 0 0 

 
 
 
 
 
In the above table, For the current state Q=1 to change in the next state to Q+=1 during a clock cycle, a 
‘D’ flip-flop would require an input value of 1, whereas a ‘T’ flip-flop would require an input value of 0. 
 
From there, we’ll build a table of values required in order to accomplish the outputs of our FSM. After 
that, we build Karnaugh mapping tables in order to determine the logic. 
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What Our First Circuit Will Look Like 
We’ll use combinational logic to derive the ‘D’ or ‘T’ input value from the current state values. In 
addition, more advanced circuits will include input and separate output values in the logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1 In1 
D or T 

Q0 In0 
D or T 

Clock 
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Example 1: Our Counter 
Description: On each clock cycle, the counter will change to the next state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let’s represent the counter states with 3 bits called Q2, Q1 and Q0. The ‘next’ states will be referred to 
as Q2+, Q1+ and Q0+. We’ll need to create a current and next state table with these Q values as follows: 
 
 

Q2 Q1 Q0  Q2+ Q1+ Q0+ 
0 0 0  0 1 1 
0 1 1  1 0 1 
1 0 1  0 1 0 
0 1 0  0 0 0 

 
 
Next, we will need to determine which type of flip-flop we’re going to use in our circuit (we’ll try both ‘T’ 
and D). We’ll then need to create a table that shows the inputs required in order to progress to the next 
state. 
 

  

000 

101 

011 

010 
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T Flip-flop Version 
Since a ‘T’ flip-flop is generally used as a counter, let’s try that example first. Here’s a ‘T’ flip-flop based 
transition table: 
 

 
 
 
 
 
 
 
 

 
 
 

Current and Next State Table  T Values Required 
Q2 Q1 Q0 Q2+ Q1+ Q0+  T2 T1 T0 
0 0 0 0 1 1  0 1  
0 1 1 1 0 1     
1 0 1 0 1 0    1 
0 1 0 0 0 0     

 
 
 
In this example 
 

• The topmost Q2 is a 0, and Q2+ is a 0, so the ‘T’ value required to get there will be a 0. 
• The topmost Q1 is a 0, and the Q1+ is a 1, so the ‘T’ value required will be a 1. 
• Finally, the third Q0 entry is a 1, while the Q0+ entry is a 0, so the ‘T’ value required will be a 1. 
 

Let’s fill in the State table, and include the ‘T’ value inputs for each. 
 

Current and Next State Table  T Values Required 
Q2 Q1 Q0 Q2+ Q1+ Q0+  T2 T1 T0 
0 0 0 0 1 1  0 1 1 
0 1 1 1 0 1  1 1 0 
1 0 1 0 1 0  1 1 1 
0 1 0 0 0 0  0 1 0 

 
 
 
Next, we’ll need to generate Karnaugh maps (generation tables) with the Q2, Q1, Q0 outputs for each of 
T2, T1 and T0. 
 
We’ll put an ‘x’ (don’t care) in each location that isn’t listed above. 

Q Q+ T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
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T2 Generation Table (from Q2/Q1/Q0 values) 
 Q2/Q1 

Q0 00 01 11 10 
0 0 0 x x 
1 x 1 x 1 

 
T2 = Q0 

 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
  

T1 Generation Table (from Q2/Q1/Q0 values) 
 Q2/Q1 

Q0 00 01 11 10 
0 1 1 x x 
1 x 1 x 1 

 
T1 = 1 

T0 Generation Table (from Q2/Q1/Q0 values) 
 Q2/Q1 

Q0 00 01 11 10 
0 1 0 x x 
1 x 0 x 1 

 
T0 = 'Q1    (as in NOT Q1) 
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Let’s create a circuit based on this design, with ‘T’ flip-flops. 
 
 
According to the generation tables: 
 

• T2 takes on its value from Q0 
• T1 is a 1 
• T0 takes on its value from 'Q1 

All we need to do now is to toggle the clock in 
Logisim and watch the Q values go from: 
 

• 000 
• 011 
• 101 
• 010 

 
Here’s the basic circuit from our tables: 
 

 
 
Let’s get those inputs hooked up from the appropriate pins as follows: 
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As an exercise in Logisim, set the Q outputs to all the different possible states and toggle the clock. 
Although this circuit is quite simple, this counter may not be able to ‘reset’ itself if it starts in the wrong 
state. As a result, we may have to go in and tighten the logic up by excluding some of the ‘don’t care’ 
states in our Karnaugh map in order to make it more reliable. Good luck! 

 

D Flip-flop Version 
Now, let’s try the circuit with some ‘D’ flip-flops instead. 
 

Current and Next State Table  D Values Required 
Q2 Q1 Q0 Q2+ Q1+ Q0+  D2 D1 D0 
0 0 0 0 1 1  0 1 1 
0 1 1 1 0 1  1 0 1 
1 0 1 0 1 0  0 1 0 
0 1 0 0 0 0  0 0 0 

 
 
 
 
Again, we’ll need to generate Karnaugh maps with the Q2, Q1, Q0 states 
for each of D2, D1 and D0. 
 
We’ll put an ‘x’ (don’t care) in each location that isn’t listed above. 
 
 
 

D2 Generation Table (from Q2/Q1/Q0 values) 
 Q2/Q1 

Q0 00 01 11 10 
0 0 0 x x 
1 x 1 x 0 

 
D2 = Q1 & Q0 

 

 
 
 
 
 
 
 
 

 
 
 

Q Q+ D 
0 0 0 
0 1 1 
1 0 0 
1 1 1 

D1 Generation Table (from Q2/Q1/Q0 values) 
 Q2/Q1 

Q0 00 01 11 10 
0 1 0 x x 
1 x 0 x 1 

 
D1 = 'Q1 
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So, what does our resultant ‘D’ flip-flop logic look like? 
 

 
 
 
 
Well, that’s not very pretty. Again, change the clock state to watch it count up through the predicted 
states. Unlike our 'T’ based counter, this one should correct itself pretty quickly if put into a random 
state, but it’s not nearly as simple a design as the 'T’ version.  

D0 Generation Table (from Q2/Q1/Q0 values) 
 Q2/Q1 

Q0 00 01 11 10 
0 1 0 x x 
1 x 1 x 0 

 
D0 = 'Q2 & 'Q1 | 'Q2 & Q0 



15 
 

Example 2: The Elevator 
Our elevator from the introduction has fewer states than the counter, but does have an input to change 
states as well as an output value. This incarnation is a Moore machine, where the output is just a 
function of the state. 

 

 

 

 

 

 
 

Analysis 
First off, we’ll need to come up with our current/next state table, which will include the Output. We’re 
also going to design this with ‘D’ and ‘T’ flip-flops as well as Verilog. 
 
 

Q0 Input Q0+ Output  D0  T0 
0 0 0 0  0  0 
0 1 1 1  1  1 
1 0 0 0  0  1 
1 1 1 1  1  0 

 
 
 
 
 
 
 
 
 
 
 
 
  

Q Q+ D 
0 0 0 
0 1 1 
1 0 0 
1 1 1 

Q Q+ T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

1 

1/1 

0 

0/0 

0 
1 
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From the current/next state table, along with ‘D’ and ‘T’ state transition tables, we can determine the 
required values of D0 and T0. 

 
 

 
 
 
 

 
 
 
 
 

 

 

 

Here’s our ‘D’ flip-flop version done with Logisim. 

 

Here’s our ‘T’ flip-flop version.  It more complex if we didn’t see that an xor gate could be used. 

 

Summary 
It’s interesting to see how the ‘D’ flip-flop scenarios differ from the ‘T’ versions. Let’s try designing the 
elevator using Quartus II and Verilog next.  

D0 Table (from Q0/In) 
Q0 

Input 0 1 
0 0 0 
1 1 1 
   

D0 = In 

T0 Table (from Q0/In) 
Q0 

Input 0 1 
0 0 1 
1 1 0 
   

T0 =(In & 'Q0) | ('In & Q0) 
or 

T0 = In ^ Q0  (as in xor) 

Output Table (from Q0/In) 
Q0 

Input 0 1 
0 0 0 
1 1 1 
   

Output = In 
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The Verilog Method 
This section assumes you are already familiar with using Verilog for both basic combinational and 
sequential designs. See my Verilog tutorial if you aren’t. 

In order to design our elevator using traditional logic, we had to perform a significant amount of 
analysis, develop truth tables and Karnaugh maps and then convert it all to sequential and 
combinational logic. Developing an FSM with Verilog uses a completely different approach and is 
actually significantly easier once you understand the template that’s used. In fact, you can go directly 
from the Mealy/Moore diagram to your Verilog code. 

Altera’s Quartus II software provides a template to get you started developing a FSM on your own. To do 
so: 

1) Open or create a project in Quartus II. 
2) Open or create a new Verilog HDL file (and save it). 
3) Click on the ‘scroll’ icon as shown: 

 

 

4) Insert a 4 state Moore Machine as shown : 
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The Quartus template provides a working 4 state Moore FSM (which I won’t duplicate). Here is the core 
functionality of this template in Verilog: 

module moore_state_machine  ( 
 // Declare inputs and outputs 
); 
 
 // Define the state register 
 // 
 
 // Define the states 
 // 
  
 // Sequential section to provide output for each state 
 // 
 
 // Sequential section to determine the next state 
 // 
  
endmodule 
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Here’s our Moore machine elevator in Verilog (called elevator.v): 
 
module elevator  ( 
 input clk, in, reset, 
 output reg [0:0] out 
); 
 
 reg [0:0] state;     // Define the state register  (1 bit wide) 
 
 parameter S0 = 0, S1 = 1;   // Define the states 
 
 always @ (state) begin    // Output depends only on the state 
  case (state) 
   S0: 
    out = 1'b0;  // A single bit, which is ‘0’ 
   S1: 
    out = 1'b1;  // A single bit, which is ‘1’ 
   default: 
    out = 1'b0; 
  endcase 
 end 
 
 always @ (posedge clk or posedge reset) begin // Determine the next state 
  if (reset) 
   state <= S0;   // Support for reset 
  else 
   case (state) 
    S0: 
     if (in) 
      state <= S1; 
     else 
      state <= S0; 
    S1: 
     if (in) 
      state <= S1; 
     else 
      state <= S0; 
   endcase 
 end 
 
endmodule 
 
 
It might look a bit complicated at first, however this is a template that can easily be used for more 
complicated Moore machines, and you DON’T have to go through all that analysis. You can actually 
develop the Verilog logic directly by looking at each state and entering the next state and outputs from 
your Moore machine. 
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Here’s what it looks like with the Netlist RTL viewer: 
 

 
 
When you click on the yellow box, you can then see it in more detail in the State Machine viewer. 
Disappointingly, it does NOT represent our elevator’s functionality as expected: 
 

 

Let’s try it out in ModelSim to see if/how it works. Before doing so, we’ll need to create a testbench in 
order to test this design. We’ll create and apply the clock along with input signals at appropriate times 
and view the resultant waveforms. 
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Here’s our test bench (called test1.v): 

// Elevator FSM test bench 
// 
 
`timescale 1ns/1ns 
 
module test1 (); 
 

reg clk, in, reset; 
 

elevator dut (clk, in, reset, out);   
 

initial begin     // Here’s the results from our waveform below 
  clk=0; in=0; reset=1; #10;  // 0ns - Clear everything and assert reset  
       //           everything at 0ns. State, output = 0. 
  reset = 0;  #10;  // 10ns - Clear reset . 
  in = 1;               #10;  // 20ns - Set input. 
  clk = 1;   #10;  // 30ns - Assert clock. State and output change  
       //             to 1. 
  clk = 0;   #10;  // 40ns - De-assert clock. 
  in = 0;   #10;  // 50ns - De-assert input. State and output, no  
       //             change. 
  clk = 1;   #10;  // 60ns - Assert clock. State and output change  
       //             to 0.  
  clk = 0;   #10;  // 70ns - De-assert clock. 
  in = 1;   #10;  // 80ns - Assert input. 
  clk = 1;   #10;  // 90ns - Assert clock. State and output change  
       //             to 1. Yeah!!!! 
  clk = 0;   #10;  // And so on . .  
  in = 0;   #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 

end 
 
endmodule 
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Here’s the ModelSim waveform: 

 

 

Summary 
1) Although the Quartus State Machine Viewer doesn’t show it, our elevator FSM works as 

designed in ModelSim. 
2) Once understood, the Moore machine Verilog template is much easier to work with than going 

through the analysis performed for traditional logic. 
3) We are avoiding risky ‘x’ states with this design. 
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Example 3: A ‘Gloppita’ Machine 
Let’s say, we’ve been provided with the Moore machine outlined below. We don’t know what it does, 
but it doesn’t look too difficult to analyze and turn it into hardware. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We’ll develop circuits for both ‘D’ as well as 'T’ flip-flop circuits again. 
 
First off, we’ll need to come up with our current/next state table, which will include the Output as well 
as the ‘D’ and ‘T’ inputs. 
 
  

1 

01/1 

0 

10/0 

00/0 

1 

1 

0 

0 
Inputs 

State/Output Start 
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Current and Next State Table (along with the Output)  D values 
required 

 T values 
required 

Q1 Q0 Input Q1+ Q0+ Output  D1 D0  T1 T0 
0 0 0 0 0 0  0 0  0 0 
0 0 1 0 1 0  0 1  0 1 
0 1 0 0 0 1  0 0  0 1 
0 1 1 1 0 1  1 0  1 1 
1 0 0 0 0 0  0 0  1 0 
1 0 1 1 0 0  1 0  0 0 
1 1 0 x x x  x x  x x 
1 1 1 x x x  x x  x x 

 
 
 
 

 

 

 

 

 

From the current/next state table, along with ‘D’ and ‘T’ state transition tables, we can determine the 
required values of D1, D0, T1 and T0. 

  

Q Q+ T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Q Q+ D 
0 0 0 
0 1 1 
1 0 0 
1 1 1 



25 
 

‘D’ Flip-flop Version 
 
Let’s analyze the ‘D’ flip-flop version first. We’ll need to determine the logic required to generate the 
outputs for D1, D0 and the Output as follows: 
 
 
 

D1 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 0 x 0 
1 0 1 x 1 

 
D1 = (Q0 & In) | (Q1 & In)  (Q0 | Q1) & In 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D0 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 0 x 0 
1 1 0 x 0 

 
D0 = 'Q1 & 'Q0 & In 

Output Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 1 x 0 
1 0 1 x 0 

 
Output = Q0  (or even, 'Q1 & Q0) 
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I tried both the Output = Q0 as well as the Output = ('Q1 & Q0) versions, and both work nicely. 
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'T’ flip-flop version. 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
  

T1 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 0 x 1 
1 0 1 x 0 

 
T1 = (In & Q0) | ('In & Q1) 

T0 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 1 x 0 
1 1 1 x 0 

 
T0 = (In & 'Q1) | Q0 

Output Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 1 x 0 
1 0 1 x 0 

 
Output = Q0 
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Again, set the input value prior to toggling the clock for each state. 
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Verilog version 
 
module gloppita  ( 
 input clk, in, reset, 
 output reg [0:0] out 
); 
 
 reg [1:0] state;    // Define the state register 
 
 parameter S0 = 0, S1 = 1, S2 = 2;  // Define the states 
 
 always @ (state) begin   // Output depends only on the state 
  case (state) 
   S0: 
    out = 2'b00; 
   S1: 
    out = 2'b01; 
   S2: 
    out = 2'b10; 
   default: 
    out = 2'b00; 
  endcase 
 end 
 
 always @ (posedge clk or posedge reset) begin  // Determine the next state 
  if (reset) 
   state <= S0; 
  else 
   case (state) 
    S0: 
     if (in) 
      state <= S1; 
     else 
      state <= S0; 
    S1: 
     if (in) 
      state <= S2; 
     else 
      state <= S0; 
    S2: 
     if(in) 
      state <= S2; 
     else 
      state <= S0; 
   endcase 
 end 
endmodule 
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Summary 
• This design was a few small edits different than our elevator design. This included widening the 

state register, increasing the number of states by 1 and making small modifications to the 
output as well as the next state logic. 

• Again, the State Machine Viewer didn’t represent this very well. 
• We didn’t have to go through the full analysis in order to develop this.  
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Example 4: A Mealy Elevator 
Our original elevator was a Moore machine, where the outputs were tied to the state. In this case, the 
outputs are a function of the state AND the input, thus we have a Mealy machine. 

• Push the ‘1’ button to go up, and the ‘0’ button to go down. 
• Output a ‘1’ every time you change state, and a ‘0’ when you don’t.  

 

 

 

 

 

 

 

 

Analysis 
 
Please have a go at this yourself. 
 
 

Q0 Input Q0+ Output  D0  T0 
0 0 0      
0 1 1      
1 0 0      
1 1 1      

 
 
 
 
 
 
 
 
 
 
 
 

Q Q+ D 
0 0 0 
0 1 1 
1 0 0 
1 1 1 

Q Q+ T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

1/1 

1 

0/0 

0 

0/1 1/0 
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From the current/next state table, along with ‘D’ and ‘T’ state transition tables, we can determine the 
required values of D0 and T0. 

 
 

 
 
 
 

 
 
 
 
 

 

 

 

Here’s our ‘D’ flip-flop version done with Logisim. 

 

 

 

 

Here’s our ‘T’ flip-flop version done with Logisim. 

 

 

 

 

Summary 
Congratulations on designing your first Mealy machine!  

D0 Table (from Q0/Input) 
Q0 

Input 0 1 
0   
1   
   

D0 =  

T0 Table (from Q0/Input) 
Q0 

Input 0 1 
0   
1   
   

T0 = 
 

Output Table (from Q0/Input) 
Q0 

Input 0 1 
0   
1   
   

Output =  
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Verilog version 
This looks very similar to the Moore version, but allows for additional logic with each case comparison. 

If you look at the ‘always’ statements for this machine, you’ll see that: 

1) The next state is determined synchronously with the clock 
2) More importantly, the output does not wait for the clock, but asynchronously happens 

immediately upon being set or reset. 
3) You can easily change those ‘always’ conditions. 

 

module mealy_elevator ( 
 input clk, in, reset, 
 output reg [0:0] out 
); 
 
 reg [0:0]state;    // Declare state register 
 
 parameter S0 = 0, S1 = 1;   // Declare states 
 
 // Determine the next state synchronously, based on the current state and the input 
 always @ (posedge clk or posedge reset) begin 
  if (reset) 
   state <= S0; 
   out <= 1’b0; 
  else 
   case (state) 
    S0: 
     if (in) begin 
      state <= S1; 
     end 
     else begin 
      state <= S0; 
     end 
    S1: 
     if (in) begin 
      state <= S1; 
     end 
     else begin 
      state <= S0; 
     end 
   endcase 
 end 
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// Determine the output based only on the current state and the input (do not wait for a clock edge). 
 always @ (state or in) 
 begin 
   case (state) 
    S0: 
     if (in) begin 
      out = 1'b1; 
     end 
     else begin 
      out = 1'b0; 
     end 
    S1: 
     if (in) begin 
      out = 1'b0; 
     end 
     else begin 
      out = 1'b1; 
     end 
   endcase 
 end 
 
endmodule 
 
 

Summary 
Yet again, the State Machine Viewer doesn’t show our design correctly, so let’s create a testbench in 
order to ensure it works as expected. We can use the same test bench that we’d designed for the Moore 
elevator. 
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Here’s the testbench for our Mealy elevator with updated comments. 

// Elevator FSM test bench 
// 
 
`timescale 1ns/1ns 
 
module test1 (); 
 

reg clk, in, reset; 
 

elevator dut (clk, in, reset, out);   
 

initial begin     // Here’s the results from our waveform below 
  clk=0; in=0; reset=1; #10;  // 0ns - Clear everything and assert reset  
       // everything at 0ns. State, output = 0. 
  reset = 0;  #10;  // 10ns - Clear reset . 
  in = 1;               #10;  // 20ns - Set input, and output asynchronously  
       //             goes to 1. 
  clk = 1;   #10;  // 30ns - Assert clock. State changes to 1. Yeah!! 
  clk = 0;   #10;  // 40ns - De-assert clock. 
  in = 0;   #10;  // 50ns - De-assert input. Output goes to 0,  
       //             while state has no change. 
  clk = 1;   #10;  // 60ns - Assert clock. State and changes to 0.  
  clk = 0;   #10;  // 70ns - De-assert clock. 
  in = 1;   #10;  // 80ns - Assert input and output changes to 1. 
  clk = 1;   #10;  // 90ns - Assert clock. State changes to 1.  
  clk = 0;   #10;  // And so on . .  
  in = 0;   #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 

end 
 
endmodule 
 

Here’s the resultant waveform: 
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Summary 
• Note that the output changes immediately upon the change of input, and not with the clock. 
• Our Mealy machine works as designed. 
• It’s still easy. 
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Example 4: A Sequence Recognizer 
 
Purpose: To output a ‘1’ when the circuit sees a ‘1010’. Otherwise, output a ‘0’. 
 
Example: 
 
 Input = 00110101000 
 Output = 00000010100 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

State Table 
A = Nothing has been seen 00 
B = A ‘1’ has been seen 01 
C = A ‘10’ has been seen 10 
D = A ‘101’ has been seen 11 

B 

0/0 

C D A 

1/0 

1/0 
0/0 

1/0 

0/1 

0/0 

1/0 
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Let’s create our state tables for this: 
 

Current and Next State Table (along with the Output)  D values 
required 

 T values 
required 

Q1 Q0 Input Q1+ Q0+ Out  D1 D0  T1 T0 
0 0 0 0 0 0  0 0  0 0 
0 0 1 0 1 0  0 1  0 1 
0 1 0 1 0 0  1 0  1 1 
0 1 1 0 1 0  0 1  0 0 
1 0 0 0 0 0  0 0  1 0 
1 0 1 1 1 0  1 1  0 1 
1 1 0 1 0 1  1 0  0 1 
1 1 1 0 1 0  0 1  1 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q Q+ D 
0 0 0 
0 1 1 
1 0 0 
1 1 1 

Q Q+ T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

D1 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 1 1 0 
1 0 0 0 1 

 
D1 = (Q0 & 'X) | (Q1 & 'Q0 & In) 

D0 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 0 0 0 
1 1 1 1 1 

 
D0 = In 
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Output Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 0 1 0 
1 0 0 0 0 

 
Out = Q1 & Q0 & 'In 
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Next, the 'T’ flip-flop version. 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
Well, that is one ugly bit of logic. I think I’ll pass on creating THAT in Logisim. Your turn! 
  

T1 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 1 0 1 
1 0 0 1 0 

 
T1 = ('Q1 & Q0 & 'In) | (Q1 & Q0 & In) | (Q1 & 'Q0 & 'In) 

T0 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 1 1 0 
1 1 0 0 1 

 
T0 = (Q0 & 'In) | ('Q0 & In) 

Output Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
0 0 0 1 0 
1 0 0 0 0 

 
Out = Q1 & Q0 & 'In 
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Verilog Version 
We note pretty quickly that the output isn’t just dependent on the state, but rather the state as well as 
input values, so it’s a Mealy machine. 

 

 
module sequence_recognizer ( 
 input clk, in, reset, 
 output reg [1:0] out 
); 
 
 reg  [1:0]state;   // Declare state register 
 
 parameter S0 = 0, S1 = 1, S2 = 2, S3 = 3;  // Declare states 
 
 always @ (posedge clk or posedge reset) begin 
  if (reset) 
   state <= S0; 
  else 
   case (state) 
    S0: 
     if (in) begin 
      state <= S1; 
     end 
     else begin 
      state <= S1; 
     end 
    S1: 
     if (in) begin 
      state <= S2; 
     end 
     else begin 
      state <= S1; 
     end 
    S2: 
     if (in) begin 
      state <= S3; 
     end 
     else begin 
      state <= S1; 
     end 
    S3: 
     if (in) begin 
      state <= S2; 
     end 
     else begin 
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      state <= S3; 
     end 
   endcase 
 end 
 
 always @ (state or in) 
 begin 
   case (state) 
    S0: 
     if (in) begin 
      out = 2'b00; 
     end 
     else begin 
      out = 2'b10; 
     end 
    S1: 
     if (in) begin 
      out = 2'b01; 
     end 
     else begin 
      out = 2'b00; 
     end 
    S2: 
     if (in) begin 
      out = 2'b10; 
     end 
     else begin 
      out = 2'b01; 
     end 
    S3: 
     if (in) begin 
      out = 2'b11; 
     end 
     else begin 
      out = 2'b00; 
     end 
   endcase 
 end 
 
endmodule 
 

From here, it should be easy to create a testbench for it. 
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Summary 
• Again, the State Machine Viewer doesn’t represent this very well. 
• This design was a few small edits away from our elevator design. This included widening the 

state register, increasing the number of states by 1 and making small modifications to the 
output as well as the next state logic. 

• It was pretty easy to change. 
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Example 5: An Old Vending Machine 
Requirements: 
 

• Open the door for a package of Beeman’s gum after 15 cents is deposited (for Chuck Yeager). 
• Sorry, but no change is returned. 
• A single slot for the money. 

 
Let’s draw it: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our inputs are: 
 

• Nickel / Dime 
• Reset 

 
Our output is: 
 

• Open / Closed 
 

Let’s list the valid coin input sequences: 
 

• Three nickels 
• Nickel, dime 
• Dime, nickel 
• Two dimes 
• Two nickels, dime 

 
 
 
 
 
 

Coin 
Sensor 

FSM 
Gum 
Release 

Clock 

Reset 
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Let’s see if we can reduce those states: 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Reset 

S0  
Empty 

S2 S1 

D N 

N N 
D 

N 

D 

D 

S3 
S4 

[Open] 
S5 

[Open] 
S6 

[Open] 

S7 
[Open] 

 

S8 
[Open] 

N N 

D 

5¢ 10¢ 
15¢ 

[Open] 
0¢ 

N | D 

D 
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The ‘x’ is a not-valid state as you can’t insert two coins at once. 
 
 
 
Let’s encode all this and then map it: 
 

 Current and Next State Table (along with the Output)  D values 
required 

 T values 
required 

Q1 Q0 Dime Nickel Q1+ Q0+ Out  D1 D0  T1 T0 
0 0 0 0 0 0 0  0 0  0 0 
0 0 0 1 0 1 0  0 1  0 1 
0 0 1 0 1 0 0  1 0  1 0 
0 0 1 1 x x x  x x  x x 
0 1 0 0 0 1 0  0 1  0 0 
0 1 0 1 1 0 0  1 0  1 1 
0 1 1 0 1 1 0  1 1  1 0 
0 1 1 1 x x x  x x  x x 
1 0 0 0 1 0 0  1 0  0 0 
1 0 0 1 1 1 0  1 1  0 1 
1 0 1 0 1 1 0  1 1  0 1 
1 0 1 1 x x x  x x  x x 
1 1 x x 0 0 1  0 0  1 1 

 
 
 
 
 
 
 
 
 

 
Present 

State 
Inputs Next 

State 
Output 
Open Dime Nickel 

0¢ 0 0 0¢ 0 
 0 1 5¢ 0 
 1 0 10¢ 0 
 1 1 x x 

5¢ 0 0 5¢ 0 
 0 1 10¢ 0 
 1 0 15¢ 0 
 1 1 x 0 

10¢ 0 0 10¢ 0 
 0 1 15¢ 0 
 1 0 15¢ 0 
 1 1 x 0 

15¢ - - 0¢ 1 
 

Q Q+ T 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Q Q+ D 
0 0 0 
0 1 1 
1 0 0 
1 1 1 
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D1 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

D/N 00 01 11 10 
00 0 0 0 1 
01 0 1 0 1 
11 x x x x 
10 1 1 0 1 

 
D1 = ('Q1 & D)  | ('Q1 & Q0 & N) | (Q1 & 'Q0) 

D0 Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

D/N 00 01 11 10 
00 0 1 0 0 
01 1 0 0 1 
11 x x x x 
10 0 1 0 1 

 
D0 = ('Q0 & N) | ('Q1 & Q0 & 'N) | (Q1 & 'Q0 & D) 

Output Generation Table (from Q1/Q0/Input values) 
 Q1/Q0 

Input 00 01 11 10 
00 0 0 1 0 
01 0 0 1 0 
11 x x x x 
10 0 0 1 0 

 
Out = Q1 & Q0 
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We’ll start out with this: 
 

 
 
 
Here’s our resultant ‘D’ flip-flop circuit. 
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Verilog Version 
 
 
module vending_machine( 
 input clk, reset, 
 input [1:0] in, 
 output reg [0:0] out 
); 
 
 reg  [1:0]state;    // Declare state register 
 
 parameter S0 = 0, S1 = 1, S2 = 2, S3 = 3;   // Declare states 
 
 always @ (state) begin 
  case (state) 
    S0: 
     out = 1'b0; 
    S1: 
     out = 1'b0; 
    S2: 
     out = 1'b0; 
    S3: 
     out = 1'b1; 
   endcase 
 end 
 
 always @ (posedge clk or posedge reset) begin 
  if (reset) 
   state <= S0; 
  else 
   case (state) 
   S0: 
    if (in == 2'b01) begin 
     state <= S1; 
    if (in == 2'b10) 
     state <= S2; 
    end 
 
   S1: 
    if (in == 2'b01) begin 
     state <= S2; 
    if (in == 2'b10) 
     state <= S3; 
    end 
    S2: 
    if (in == 2'b01) begin 
     state <= S3; 
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    if (in == 2'b10) 
     state <= S3; 
    end 
    S3: 
      state <= S0; 
   endcase 
 
 end 
 
endmodule 
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We need a testbench for that. 
 
// Vending machine test bench 
// 
 
`timescale 1ns/1ns 
 
module test1 (); 
 
reg clk, reset; 
reg [1:0] in; 
 
vending_machine dut (clk, reset, in, out);   
 
initial begin     // Here’s the results from our waveform below 
  clk=0; in=0; reset=1; #10;  // 0ns - Clear everything and assert reset  
       //           everything at 0ns. State, output = 0. 
  reset = 0;  #10;  // 10ns - Clear reset . 
 
       
   in = 2'b01;  #10;   // Start off with 3 nickels 
   clk = 1;   #10; 
  clk = 0;   #10; 
  in = 2'b01;  #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
  in = 2'b01;  #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
 
 
        
  in = 2'b01;  #10;  // Then 2 nickels and a dime 
  clk = 1;   #10; 
  clk = 0;   #10; 
  in = 2'b01;  #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
  in = 2'b10;  #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
 
        
  in = 2'b01;  #10;  // Then 1 nickel and a dime 
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  clk = 1;   #10; 
  clk = 0;   #10; 
  in = 2'b10;  #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
 
        
  in = 2'b10;  #10;  // Then 2 dimes 
  clk = 1;   #10; 
  clk = 0;   #10; 
  in = 2'b10;  #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
 
        
  in = 2'b10;  #10;  // Then 1 dime and a nickel 
  clk = 1;   #10; 
  clk = 0;   #10; 
  in = 2'b01;  #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
  clk = 1;   #10; 
  clk = 0;   #10; 
 
       // We should also try some with input = 0; 
 
end 
 
endmodule 
 
 
 

ModelSim Waveforms 
The waveforms are getting to the point, where you might want to add pass/fail text. 
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Summary 
 
This is really a 4 state Moore machine with a 2 bit input. It’s relatively straightforward when you think of 
it that way. The issue is that the testing can start to become exponentially more complicated as you 
increase the number of states, inputs and outputs to be tested. 
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Conclusion 
This is obviously not an exhaustive study of Finite State Machines, but rather an overview including 
representation, analysis and implementation of a few simple examples. 

For me, the next steps will be to learn various aspects of CPU architecture and implement one in Verilog. 

 

Best of luck, 

 

Andrew 
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